Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38540780

RESUMO

Lipid rafts, specialised microdomains within cell membranes, play a central role in orchestrating various aspects of neurodevelopment, ranging from neural differentiation to the formation of functional neuronal networks. This review focuses on the multifaceted involvement of lipid rafts in key neurodevelopmental processes, including neural differentiation, synaptogenesis and myelination. Through the spatial organisation of signalling components, lipid rafts facilitate precise signalling events that determine neural fate during embryonic development and in adulthood. The evolutionary conservation of lipid rafts underscores their fundamental importance for the structural and functional complexity of the nervous system in all species. Furthermore, there is increasing evidence that environmental factors can modulate the composition and function of lipid rafts and influence neurodevelopmental processes. Understanding the intricate interplay between lipid rafts and neurodevelopment not only sheds light on the fundamental mechanisms governing brain development but also has implications for therapeutic strategies aimed at cultivating neuronal networks and addressing neurodevelopmental disorders.


Assuntos
Neurônios , Transdução de Sinais , Membrana Celular/metabolismo , Transdução de Sinais/fisiologia , Encéfalo , Microdomínios da Membrana/química
2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139047

RESUMO

Gangliosides are major glycans on vertebrate nerve cells, and their metabolic disruption results in congenital disorders with marked cognitive and motor deficits. The sialyltransferase gene St3gal2 is responsible for terminal sialylation of two prominent brain gangliosides in mammals, GD1a and GT1b. In this study, we analyzed the expression of calcium-binding interneurons in primary sensory (somatic, visual, and auditory) and motor areas of the neocortex, hippocampus, and striatum of St3gal2-null mice as well as St3gal3-null and St3gal2/3-double null. Immunohistochemistry with highly specific primary antibodies for GABA, parvalbumin, calretinin, and calbindin were used for interneuron detection. St3gal2-null mice had decreased expression of all three analyzed types of calcium-binding interneurons in all analyzed regions of the neocortex. These results implicate gangliosides GD1a and GT1b in the process of interneuron migration and maturation.


Assuntos
Cálcio , Neocórtex , Sialiltransferases , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Camundongos , Calbindina 2/metabolismo , Calbindinas/metabolismo , Cálcio/metabolismo , Gangliosídeos/metabolismo , Hipocampo/metabolismo , Interneurônios/metabolismo , Mamíferos/metabolismo , Camundongos Knockout , Mutação , Neocórtex/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , beta-Galactosídeo alfa-2,3-Sialiltransferase/genética , beta-Galactosídeo alfa-2,3-Sialiltransferase/metabolismo
3.
Sci Rep ; 13(1): 20990, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017021

RESUMO

Psoriasis vulgaris (PV) is an inflammatory skin disease largely driven by aberrant αßT cells. Mucosal-associated invariant T (MAIT) cells, which constitute the largest circulating innate-like αßT cell community in human adults, are characterized by a semi-invariant TCRVα7.2 receptor and MR1-restricted affinity toward microbial metabolites. Limited MAIT TCRα diversity is complemented by a more variable TCRß repertoire, but its footprint in the MAIT repertoire of PV patients has never been tested. Here, we used bulk TCRSeq, MiXCR, VDJTools, and Immunarch pipelines to decipher and compare TCRß clonotypes from flow-sorted, peripheral TCRVα7.2+MR1-5-OP-RU-tet+MAIT cells from 10 PV patients and 10 healthy, matched controls. The resulting TCRß collections were highly private and individually unique, with small public clonotype content and high CDR3ß amino acid length variability in both groups. The age-related increase in the 'hyperexpanded' clonotype compartment was observed in PV, but not in healthy MAIT repertoires. The TCRß repertoires of PV patients were also marked by skewed TRBV/TRBJ pairing, and the emergence of PV-specific, public CDR3ß peptide sequences closely matching the published CDR3ß record from psoriatic skin. Overall, our study provides preliminary insight into the peripheral MAIT TCRß repertoire in psoriasis and warrants further evaluation of its diagnostic and clinical significance.


Assuntos
Células T Invariantes Associadas à Mucosa , Psoríase , Adulto , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Subpopulações de Linfócitos T , Mucosa/metabolismo , Psoríase/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
4.
Life (Basel) ; 13(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36836885

RESUMO

Turpentine is a fluid used mainly as a solvent for thinning oil-based paints, obtained by distilling the resin of coniferous trees. Fine art painters use turpentine on a daily basis. The aim of this study was to investigate the genotoxic effect of turpentine and to determine the lymphocyte proliferation index in the peripheral blood of individuals occupationally exposed to turpentine. For this purpose, the cytokinesis-block micronucleus assay (CBMN) was used to determine the total number of micronuclei (MNi), nucleoplasmic bridges (NPB), and nuclear buds (NBUD), as well as the cell proliferation index (CBPI) in the peripheral blood lymphocytes of the subjects. Twenty-two subjects exposed to turpentine daily through their work participated in the study and were compared to twenty subjects in the control group. The results showed a significant increase in the number of micronuclei and other genotoxicity parameters, as well as significant cytotoxicity based on CBPI values. In addition, the genotoxic and cytotoxic effects of turpentine were found to be time-dependent, i.e., the deleterious effects of turpentine on genetic material increase with prolonged exposure. These results strongly suggest that exposure to turpentine vapors may affect genome stability and that occupational safety measures should be taken when using turpentine.

5.
Biochem Med (Zagreb) ; 31(3): 030502, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34658643

RESUMO

Women's metabolism during pregnancy undergoes numerous changes that can lead to gestational diabetes mellitus (GDM). The cause and pathogenesis of GDM, a heterogeneous disease, are not completely clear, but GDM is increasing in prevalence and is associated with the modern lifestyle. Most diagnoses of GDM are made via the guidelines from the International Association of Diabetes and Pregnancy Study Groups (IADSPG), which involve an oral glucose tolerance test (OGTT) between 24 and 28 weeks of pregnancy. Diagnosis in this stage of pregnancy can lead to short- and long-term implications for the mother and child. Therefore, there is an urgent need for earlier GDM markers in order to enable prevention and earlier treatment. Routine GDM biomarkers (plasma glucose, insulin, C-peptide, homeostatic model assessment of insulin resistance, and sex hormone-binding globulin) can differentiate between healthy pregnant women and those with GDM but are not suitable for early GDM diagnosis. In this article, we present an overview of the potential early biomarkers for GDM that have been investigated recently. We also present our view of future developments in the laboratory diagnosis of GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Biomarcadores , Glicemia , Peptídeo C , Diabetes Gestacional/diagnóstico , Feminino , Humanos , Insulina , Gravidez
6.
J Neurosci ; 35(31): 10911-26, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26245956

RESUMO

Neocortical development requires tightly controlled spatiotemporal gene expression. However, the mechanisms regulating ribosomal complexes and the timed specificity of neocortical mRNA translation are poorly understood. We show that active mRNA translation complexes (polysomes) contain ribosomal protein subsets that undergo dynamic spatiotemporal rearrangements during mouse neocortical development. Ribosomal protein specificity within polysome complexes is regulated by the arrival of in-growing thalamic axons, which secrete the morphogen Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3). Thalamic WNT3 release during midneurogenesis promotes a change in the levels of Ribosomal protein L7 in polysomes, thereby regulating neocortical translation machinery specificity. Furthermore, we present an RNA sequencing dataset analyzing mRNAs that dynamically associate with polysome complexes as neocortical development progresses, and thus may be regulated spatiotemporally at the level of translation. Thalamic WNT3 regulates neocortical translation of two such mRNAs, Foxp2 and Apc, to promote FOXP2 expression while inhibiting APC expression, thereby driving neocortical neuronal differentiation and suppressing oligodendrocyte maturation, respectively. This mechanism may enable targeted and rapid spatiotemporal control of ribosome composition and selective mRNA translation in complex developing systems like the neocortex. SIGNIFICANCE STATEMENT: The neocortex is a highly complex circuit generating the most evolutionarily advanced complex cognitive and sensorimotor functions. An intricate progression of molecular and cellular steps during neocortical development determines its structure and function. Our goal is to study the steps regulating spatiotemporal specificity of mRNA translation that govern neocortical development. In this work, we show that the timed secretion of Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3) by ingrowing axons from the thalamus regulates the combinatorial composition of ribosomal proteins in developing neocortex, which we term the "neocortical ribosome signature." Thalamic WNT3 further regulates the specificity of mRNA translation and development of neurons and oligodendrocytes in the neocortex. This study advances our overall understanding of WNT signaling and the spatiotemporal regulation of mRNA translation in highly complex developing systems.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/citologia , Neurogênese/fisiologia , Biossíntese de Proteínas , Ribossomos/metabolismo , Tálamo/metabolismo , Proteína Wnt3/metabolismo , Animais , Axônios/metabolismo , Camundongos , Neocórtex/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética
7.
Croat Med J ; 56(2): 104-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25891869

RESUMO

AIM: To compare cardiometabolic risk-related biochemical markers and sexual hormone and leptin receptors in the adrenal gland of rat males, non-ovariectomized females (NON-OVX), and ovariectomized females (OVX) under chronic stress. METHODS: Forty six 16-week-old Sprague-Dawley rats were divided into male, NON-OVX, and OVX group and exposed to chronic stress or kept as controls. Weight, glucose tolerance test (GTT), serum concentration of glucose, and cholesterol were measured. Adrenal glands were collected at the age of 28 weeks and immunohistochemical staining against estrogen beta (ERß), progesterone (PR), testosterone (AR), and leptin (Ob-R) receptors was performed. RESULTS: Body weight, GTT, serum cholesterol, and glucose changed in response to stress as expected and validated the applied stress protocol. Stressed males had significantly higher number of ERß receptors in comparison to control group (P = 0.028). Stressed NON-OVX group had significantly decreased AR in comparison to control group (P = 0.007). The levels of PR did not change in any consistent pattern. The levels of Ob-R increased upon stress in all groups, but the significant difference was reached only in the case of stressed OVX group compared to control (P = 0.033). CONCLUSION: Chronic stress response was sex specific. OVX females had similar biochemical parameters as males. Changes upon chronic stress in adrenal gland were related to an increase in testosterone receptor in females and decrease in estrogen receptor in males.


Assuntos
Glândulas Suprarrenais/metabolismo , Receptor beta de Estrogênio/metabolismo , Receptores Androgênicos/metabolismo , Receptores para Leptina/metabolismo , Receptores de Progesterona/metabolismo , Estresse Fisiológico , Animais , Glicemia/metabolismo , Peso Corporal/fisiologia , Colesterol/sangue , Feminino , Teste de Tolerância a Glucose , Imuno-Histoquímica , Masculino , Ovariectomia , Ratos , Ratos Sprague-Dawley , Fatores Sexuais
8.
Proc Natl Acad Sci U S A ; 111(36): E3815-24, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157170

RESUMO

Precise spatiotemporal control of mRNA translation machinery is essential to the development of highly complex systems like the neocortex. However, spatiotemporal regulation of translation machinery in the developing neocortex remains poorly understood. Here, we show that an RNA-binding protein, Hu antigen R (HuR), regulates both neocorticogenesis and specificity of neocortical translation machinery in a developmental stage-dependent manner in mice. Neocortical absence of HuR alters the phosphorylation states of initiation and elongation factors in the core translation machinery. In addition, HuR regulates the temporally specific positioning of functionally related mRNAs into the active translation sites, the polysomes. HuR also determines the specificity of neocortical polysomes by defining their combinatorial composition of ribosomal proteins and initiation and elongation factors. For some HuR-dependent proteins, the association with polysomes likewise depends on the eukaryotic initiation factor 2 alpha kinase 4, which associates with HuR in prenatal developing neocortices. Finally, we found that deletion of HuR before embryonic day 10 disrupts both neocortical lamination and formation of the main neocortical commissure, the corpus callosum. Our study identifies a crucial role for HuR in neocortical development as a translational gatekeeper for functionally related mRNA subgroups and polysomal protein specificity.


Assuntos
Proteínas ELAV/metabolismo , Neocórtex/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Corpo Caloso/embriologia , Corpo Caloso/metabolismo , Proteína Semelhante a ELAV 1 , Fator de Iniciação 2 em Eucariotos/metabolismo , Deleção de Genes , Técnicas de Inativação de Genes , Camundongos , Mitose , Modelos Biológicos , Neocórtex/embriologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células Neuroepiteliais/metabolismo , Neurogênese , Neuroglia/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Fatores de Tempo , Transcrição Gênica
9.
Croat Med J ; 55(3): 228-38, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24891281

RESUMO

AIM: To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. METHODS: The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. RESULTS: StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. CONCLUSION: HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Atividade Motora/fisiologia , Ovariectomia , Receptores para Leptina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Western Blotting , Peso Corporal/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Ovário/fisiologia , Ratos , Ratos Wistar
10.
PLoS One ; 8(9): e75720, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24098718

RESUMO

Gangliosides - sialic acid-bearing glycolipids - are major cell surface determinants on neurons and axons. The same four closely related structures, GM1, GD1a, GD1b and GT1b, comprise the majority of total brain gangliosides in mammals and birds. Gangliosides regulate the activities of proteins in the membranes in which they reside, and also act as cell-cell recognition receptors. Understanding the functions of major brain gangliosides requires knowledge of their tissue distribution, which has been accomplished in the past using biochemical and immunohistochemical methods. Armed with new knowledge about the stability and accessibility of gangliosides in tissues and new IgG-class specific monoclonal antibodies, we investigated the detailed tissue distribution of gangliosides in the adult mouse brain. Gangliosides GD1b and GT1b are widely expressed in gray and white matter. In contrast, GM1 is predominately found in white matter and GD1a is specifically expressed in certain brain nuclei/tracts. These findings are considered in relationship to the hypothesis that gangliosides GD1a and GT1b act as receptors for an important axon-myelin recognition protein, myelin-associated glycoprotein (MAG). Mediating axon-myelin interactions is but one potential function of the major brain gangliosides, and more detailed knowledge of their distribution may help direct future functional studies.


Assuntos
Sistema Nervoso Central/metabolismo , Gangliosídeos/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Vias Biossintéticas/fisiologia , Gangliosídeos/biossíntese , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Glicoproteína Associada a Mielina/metabolismo
11.
Biochim Biophys Acta ; 1820(9): 1437-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22206893

RESUMO

BACKGROUND: Mono-, di- and trisialo gangliosides are major glycosphingolipids in the brain of higher vertebrates involved in lipid raft assembly. In contrast, the fish brain is abundant in polisialo-gangliosides, whose function is implicated in the modulation of repulsive and attractive intercellular interactions during embryonic development and a temperature adaptation process. The histological distribution of gangliosides is usually studied in rodent and mammalian brains, but to date it has not been described in the case of fish brain. METHODS: Gangliosides were extracted from adult brains of trout, carp and zebrafish and separated by TLC. High-affinity anti-ganglioside (GM1, GD1a, GD1b, GT1b) IgG antibodies were used for immunohistochemistry. RESULTS: In trout and carp brains GM1 and GT1b are expressed in the same neuronal cell bodies from the telencephalon to the spinal cord. In zebrafish brain GM1 was not detected, whereas GT1b is a general neuropil staining. GD1a is specific for unmyelinated parallel fibers in carp and zebrafish brains as well as parallel fibers in the molecular layer of all cerebellar divisions. In trout brain GD1b is found in parallel fibers of the cerebellum, but not in the tectum mesencephali. GD1b is expressed in zebrafish neuronal cell bodies. CONCLUSIONS: Each studied species has a different expression of complex gangliosides. GT1b is widely present, whereas GD1a and GD1b appear in a specific group of unmyelinated fibers and could be used as their specific marker. GENERAL SIGNIFICANCE: This is the first report on mono-, di- and trisialo ganglioside (GM1, GD1a, GD1b and GT1b) distribution in the brain of adult Actinopterygian fishes. This article is part of a Special Issue entitled Glycoproteomics.


Assuntos
Encéfalo/metabolismo , Peixes/metabolismo , Gangliosídeos/metabolismo , Animais , Afinidade de Anticorpos , Química Encefálica , Carpas/metabolismo , Gangliosídeo G(M1)/análise , Gangliosídeo G(M1)/isolamento & purificação , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/análise , Gangliosídeos/imunologia , Gangliosídeos/isolamento & purificação , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Distribuição Tecidual , Truta/metabolismo , Peixe-Zebra/metabolismo
12.
Coll Antropol ; 35 Suppl 1: 121-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21648321

RESUMO

Gangliosides are major cell-surface determinants in the central nervous system (CNS) of vertebrates, found both in neuronal and glial cell membranes. Together with cholesterol and glycosylphosphatidylinositol (GPI) - anchored proteins, gangliosides are involved in organization of plasma membrane microdomains. Based on biochemical studies, frog brain was previously described as having low quantities of gangliosides and their distribution pattern in specific brain regions was unknown. Using highly specific monoclonal antibodies generated against four major brain gangliosides (GM1, GD1a, GD1b and GT1b), we examined the distribution of these molecules in CNS of four different species of frogs (Rana esculenta, Rana temporaria, Bufo bufo and Bufo viridis). We also studied the distribution of myelin- associated glycoprotein (MAG), an inhibitor of axonal regeneration, which is a ligand for gangliosides GD1a and GT1b. Our results show that ganglioside GDla is expressed in neurons of olfactory bulb in all studied animals. In the brain of Rana sp., GD1a is expressed in the entire olfactory pathway, from olfactory bulbs to amygdala, while in Bufo sp. GD1a is restricted to the main olfactory bulb. Furthermore, we found that most of myelinated pathways in frogs express MAG, but do not express GD1a, which could be one of the reasons for better axon regeneration of neural pathways after CNS injury in amphibians in comparison to mammals.


Assuntos
Anuros , Gangliosídeos/metabolismo , Condutos Olfatórios/metabolismo , Animais , Gangliosídeos/análise , Imuno-Histoquímica , Microdomínios da Membrana , Glicoproteína Associada a Mielina/análise , Glicoproteína Associada a Mielina/metabolismo , Condutos Olfatórios/química , Especificidade de Órgãos
13.
J Histochem Cytochem ; 55(8): 805-12, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17409378

RESUMO

Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Assuntos
Encéfalo/metabolismo , Detergentes/farmacologia , Gangliosídeos/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Receptores de Superfície Celular/metabolismo , Antígenos Thy-1/metabolismo , Animais , Encéfalo/anatomia & histologia , Membrana Celular/metabolismo , Técnicas de Cocultura , Gangliosídeo G(M1)/genética , Gangliosídeo G(M1)/metabolismo , Gangliosídeos/genética , Imuno-Histoquímica , Fluidez de Membrana , Camundongos , Camundongos Knockout , Medula Espinal/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...